- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

Glycosides from the Root of Iodes cirrhosa

Maoluo Gan, Yanling Zhang, Sheng Lin, Mingtao Liu, Weixia Song, Jiachen Zi, Yongchun Yang, Xiaona Fan, Jiangong Shi,* Jinfeng Hu, Jiandong Sun, and Naihong Chen*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education), Beijing 100050, People's Republic of China

Received December 18, 2007

Abstract

Seven new neolignan glycosides (1-7), two arylglycerol glycosides ($\mathbf{8}, \mathbf{9}$), and 18 known glycosides have been isolated from an ethanolic extract of the root of Iodes cirrhosa. Their structures including absolute configurations were determined by spectroscopic and chemical methods. Based on analysis of the NMR data of threo and erythro 8-4'-oxyneolignans and arylglycerols in different solvents, the validity of $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values to distinguish threo and erythro derivatives was discussed. In the in vitro assays, compound 4 and liriodendrin (17) both showed activity against glutamate-induced PC12 cell damage at $10^{-5} \mathrm{M}$.

Iodes (Icacinaceae) species are woody climber plants, widely distributed in southeastern Asia, especially in southern China. Iodes cirrhosa Turcz. is one of several Iodes species used in traditional Chinese medicine. Extracts of the root and stem are reported to improve general blood circulation and are used for treatment of inflammatory and rheumatic diseases. ${ }^{1}$ There have been no previous reports concerning the secondary metabolites from this genus. As part of a program to assess the chemical and biological diversity of traditional Chinese medicines, ${ }^{2,3}$ an ethanolic extract of the root of I. cirrhosa has been investigated. We describe herein isolation and structural elucidation of seven new neolignan glycosides (1-7), two new arylglycerol glycosides ($\mathbf{8}, \mathbf{9}$), and 18 known glycosides. Compounds 1-3 are unusual 8-4'-oxyneolignan glycosides with a glycosyloxy group at C-3', while 7 is an unusual dihydro[b]benzofuran neolignan glycoside with an aromatic ring at $\mathrm{C}-8^{\prime}$. Since the assignment of some of the erythro and threo 8-4'-oxyneolignan and arylglycerol derivatives is ambiguous in the literature, ${ }^{4-9}$ the validity of $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values to distinguish threo and erythro $8-4^{\prime}$-oxyneolignan and arylglycerol derivatives is discussed on the basis of NMR data of threo and erythro 8-4'-oxyneolignans and arylglycerols in different solvents. Some in vitro bioassays are also reported.

Results and Discussion

Compound 1 was obtained as an amorphous solid, and the presence of $\mathrm{OH}\left(3358 \mathrm{~cm}^{-1}\right)$ and aromatic (1602 and $1509 \mathrm{~cm}^{-1}$) groups were indicated by its IR spectrum. The positive mode ESIMS of $\mathbf{1}$ gave a quasi-molecular ion peak at $\mathrm{m} / \mathrm{z} 547[\mathrm{M}+\mathrm{Na}]^{+}$, and the molecular formula $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{12}$ was indicated by HRFABMS at m / z 547.1801. The ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1}$ in DMSO- d_{6} showed signals attributed to two 1,3,4-trisubstituted aromatic rings at $\delta 6.97$ (H2), $6.68(\mathrm{H}-5)$, and $6.80(\mathrm{H}-6)$, and $7.19\left(\mathrm{H}-2^{\prime}\right), 6.89\left(\mathrm{H}-5^{\prime}\right)$, and 6.93 (H-6'), together with signals attributed to an aromatic methoxy at $\delta 3.72$ and an exchangeable phenolic OH proton at $\delta 8.80(\mathrm{OH}-$ 4). A trans-arylpropenoxy unit was indicated by signals at $\delta 6.41$ (H-7'), $6.21\left(\mathrm{H}-8^{\prime}\right)$, and $4.06\left(\mathrm{H}_{2}-9^{\prime}\right)$. Meanwhile, an arylglyceryloxy unit was indicated by signals of a vicinal coupling system attributed to two oxymethines at $\delta 4.69(\mathrm{H}-7)$ and $4.27(\mathrm{H}-8)$ and an oxymethylene at $\delta 3.63(\mathrm{H}-9 \mathrm{a})$ and $3.51(\mathrm{H}-9 \mathrm{~b})$. A doublet assignable to an anomeric proton at $\delta 4.79$, partially overlapped signals attributed to oxymethylene and oxymethine protons between $\delta 3.13$ and 3.70 , and exchangeable OH protons between $\delta 4.50$ and 5.35 suggested that there was a β-glycosyl moiety in $\mathbf{1}$. Enzymatic hydrolysis of $\mathbf{1}$ produced $\mathbf{1 a}$ and a sugar. The sugar

[^0]gave a positive optical rotation, $[\alpha]+47.2$, indicating that it was D-glucose. ${ }^{10}$ The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{1}$ showed carbon signals corresponding to the above units (Table 2). The presence of four oxygen-bearing aromatic carbons ($\delta>145 \mathrm{ppm}$) in the ${ }^{13} \mathrm{C}$ NMR spectrum, in combination with the chemical shifts and coupling patterns of the protons of the two aromatic rings in the ${ }^{1} \mathrm{H}$ NMR spectrum and the molecular composition, suggested that 1 was a $8-4^{\prime}$-oxyneolignan β-D-glucopyranoside with one phenolic OH and one aromatic methoxy groups. However, the spectroscopic data of $\mathbf{1}$ were different from those of related known compounds. ${ }^{1-13}$

Extensive analysis of HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of $\mathbf{1}$ provided unambiguous assignments of proton and carbon signals in the NMR spectra. In the HMBC spectrum of 1, long-range correlations from $\mathrm{H}-7$ to $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-6, \mathrm{C}-8$, and $\mathrm{C}-9$ and from $\mathrm{H}-7^{\prime}$ to $\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}, \mathrm{C}-8^{\prime}$, and $\mathrm{C}-9^{\prime}$ (Figure S1, Supporting Information), in combination with chemical shifts and coupling patterns, confirmed the presence of 3,4 -disubstituted phenylglyceryloxy and $3^{\prime}, 4^{\prime}$-disubstituted trans-phenylpropenoxy units. HMBC correlations of C-3 with H-2, H-5, and the methoxy protons and of C-4 with H-2 and H-6 proved that the methoxy was located at C-3. Correlations of $\mathrm{C}-3^{\prime}$ with $\mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}$, and the anomeric proton and of $\mathrm{C}-4^{\prime}$ with $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$, and the chemical shift of $\mathrm{C}-3^{\prime}$, indicated that the glucose was attached at $\mathrm{C}-3^{\prime}$. This conclusion was supported by NOE enhancements of $\mathrm{H}-7^{\prime}, \mathrm{H}-8^{\prime}$, and $\mathrm{H}-\mathrm{l}^{\prime \prime}$ by irradiation of $\mathrm{H}-2^{\prime}$ in the NOE difference experiment (Figure S1, Supporting Information). Although a correlation from H-8 to C-4' was not observed in the HMBC spectrum of $\mathbf{1}$, NOE enhancements of $\mathrm{H}-2$, $\mathrm{H}-6$, and $\mathrm{H}-5$ ' by irradiation of $\mathrm{H}-8$ indicated a connection between $\mathrm{C}-8$ and $\mathrm{C}-\mathbf{4}^{\prime}$ in $\mathbf{1 .}$

The stereochemistry of $\mathbf{1}$ was elucidated by a comprehensive analysis of the NMR and CD data of $\mathbf{1}, \mathbf{1 a}$, and the acetonide $\mathbf{1 b}$. The ${ }^{1} \mathrm{H}$ NMR spectra of 1a and 1b (Table S1, Supporting Information) showed $J_{7,8}$ values of 4.2 and 9.0 Hz , respectively. This suggested that $\mathbf{1}$ possessed an erythro relative configuration. ${ }^{11,12,14-18}$ The CD spectra of $\mathbf{1}$ and $\mathbf{1 a}$ showed negative Cotton effects at 233 and 236 nm (Figures S2 and S3, Supporting Information), respectively, indicating $8 R$ configuration for these compounds. ${ }^{18,19}$ Thus, $\mathbf{1}$ was determined to be $(-)-\left(7 S, 8 R, 7^{\prime} E\right)$ $4,7,9,3^{\prime}, 9^{\prime}$-pentahydroxy-3-methoxy-8-4'-oxyneolign-7'-ene-3'- O -β-d-glucopyranoside.

Compound 2 was obtained as an amorphous powder, and the molecular formula $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{12}$ was indicated by HRESIMS at m / z $549.1963[\mathrm{M}+\mathrm{Na}]^{+}$. The UV, IR, and NMR spectroscopic data of 2 indicated that it was a diastereomer of $(7 R, 8 R)-4,7,9,9^{\prime}-$ tetrahydroxy-3-methoxy-8-O-4'-neolignan-3'- $O-\beta$-D-glucopyranoside, ${ }^{15}$ which was confirmed by the HMBC experiment of 2 . Hydrolysis of $\mathbf{2}$ with β-glucosidase librated 2a and D-glucose. The
Table 1. ${ }^{1} \mathrm{H}$ NMR Data for Compounds $\mathbf{1 - 7}{ }^{a}$

no.	1	2	3	4	5	6	$7{ }^{\text {b }}$
1a						4.07 dd (10.5, 5.0)	
1b						3.80 dd (10.5, 5.0)	
2	6.97 brs	6.97 brs	6.88 brs	6.95 d (1.5)	6.96 d (1.5)	4.54 quint (5.0)	6.92 brs
3a						3.77 dd (12.0, 5.0)	
3b						3.74 dd (12.0, 5.0)	
5	6.68 d (8.0)	6.68 d (8.0)	6.64 d (8.0)	6.69 d (8.0)	6.67 d (8.0)		7.04 d (8.0)
6	6.80 brd (8.0)	6.78 brd (8.0)	6.67 brd (8.0)	6.75 dd (8.0, 1.5)	6.75 dd (8.0, 1.5)		6.80 brd (8.0)
7	4.69 d (5.5)	4.69 d (5.5)	4.72 d (4.5)	4.69 d (4.5)	4.68 d (4.5)		5.46 d (5.5)
8	4.27 ddd (6.0,5.5,3.0)	4.18 ddd (5.5, 5.0, 3.5)	4.24 ddd (6.0, 4.5, 3.0)	3.93 ddd (6.5, 4.5, 3.5)	4.16 ddd (5.5, 4.5, 4.0)		3.35 m
9a	3.63 dd (12.0, 6.0)	3.62 dd (11.0, 5.0)	3.70 dd (11.5, 6.0)	3.58 dd (11.5, 6.5)	$3.55 \mathrm{dd}(11.0,4.0)$		3.60 m
9b	$3.51 \mathrm{dd}(12.0,3.0)$	3.48 dd (11.0, 3.5)	3.38 dd (11.5, 3.0)	3.48 d (11.5, 3.5)	$3.22 \mathrm{dd}(11.0,5.5)$		3.49 m
2^{\prime}	7.19 d (1.0)	6.94 d (2.0)	6.90 d (1.5)	6.60 d (1.5)	6.81 d (1.5)	7.24 d (2.0)	6.55 brs
5	6.89 d (8.0)	6.82 d (8.0)		6.65 d (8.0)	6.90 d (8.5)	7.13 d (8.0)	
$6{ }^{\prime}$	6.93 dd (8.0, 1.0)	6.70 dd (8.0, 2.0)	6.77 d (1.5)	6.39 dd (8.0, 1.5)	6.66 dd (8.5, 1.5)	7.20 dd (8.0, 2.0)	6.60 brs
7'	6.41 d (16.0)	2.47 t (7.0)	6.43 d (16.0)	2.46 t (7.0)	2.56 t (7.5)	7.55 d (16.0)	4.83 brs
8^{\prime}	$6.21 \mathrm{dt}(16.0,5.0)$	1.66 quint (7.0)	$6.31 \mathrm{dt}(16.0,5.0)$	1.73 quint (7.0)	1.78 m	$6.63 \mathrm{dd}(16.0,7.5)$	2.70 m
$9{ }^{\prime}$ a	4.06 d (5.0)	3.37 t (7.0)	4.08 d (5.0)	3.74 dt (10.0, 7.0)	3.79 dt ((10.0, 6.0)	9.54 d (7.5)	3.69 m
9'b				3.38 dt (10.0, 7.0)	3.39 dt (10.0, 7.0)		3.47 m
$1^{\prime \prime}$	4.79 d (7.0)	4.75 d (7.5)	4.80 d (7.0)	4.09 d (8.0)	4.09 d (8.0)	4.29 d (7.5)	4.87 d (7.5)
2 "	3.27 m	3.26 m	3.28 m	2.94 dd (8.5, 8.0)	2.95 dd (8.0, 8.0)	3.14 dd (8.5, 7.5)	3.23 m
3"	3.29 m	3.30 m	3.26 m	$3.12 \mathrm{dd}(8.5,8.5)$	3.14 dd (8.0, 8.0)	$3.23 \mathrm{dd}(8.5,8.5)$	3.24 m
4"	$3.15 \mathrm{dd}(9.0,8.5)$	3.14 m	3.12 m	$3.03 \mathrm{dd}(8.5,8.5)$	$3.02 \mathrm{dd}(8.0,8.5)$	$3.23 \mathrm{dd}(9.0,8.5)$	3.14 m
5"	3.26 m	3.25 m	3.28 m	3.04 m	3.07 m	3.29 m	3.24 m
6"a	3.68 brd (11.5)	3.66 brd (12.0)	3.69 brd (11.5)	3.64 brd (12.0)	$3.63 \mathrm{dd}(12.0,2.0)$	3.81 dd (11.5, 2.0)	$3.66 \mathrm{dd}(12.0,2.0)$
6'b	3.46 dd (11.5, 5.5)	3.46 dd (12.0, 5.5)	3.48 dd (11.5, 5.5)	3.43 dd (12.0, 5.0)	3.41 dd (12.0, 6.0)	3.60 dd (11.5, 5.0)	3.46 dd (12.0, 5.0)
$3-\mathrm{OMe}$	3.72 s	3.72 s	3.72 s	3.71 s	3.68 s		3.73 s
$3^{\prime} / 5^{\prime}-\mathrm{OMe}$			3.74 s		3.70 s	3.84 s	3.63 s

[^1]Table 2. ${ }^{13} \mathrm{C}$ NMR Data for Compounds $1-\mathbf{7}^{a}$

no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}^{b}$
1	132.9	133.0	132.7	132.7	133.0	69.1	135.6
2	111.2	111.2	111.0	111.4	111.0	80.5	110.2
3	147.1	147.0	147.1	147.1	147.0	62.0	148.9
4	145.5	145.4	145.5	145.6	145.4		146.1
5	114.8	114.8	114.8	114.8	114.6		115.3
6	119.6	119.6	119.3	119.4	119.0		117.8
7	71.4	71.3	71.6	71.8	71.0		86.5
8	85.6	85.9	86.4	87.0	84.8		53.5
9	59.9	59.8	59.6	60.2	60.1		63.4
1^{\prime}	131.0	136.0	132.4	136.5	134.8	129.6	138.4
2^{\prime}	115.3	117.9	108.0	116.5	112.9	112.7	110.8
3^{\prime}	148.4	148.2	151.2	149.7	149.5	151.9	142.8
4^{\prime}	147.9	146.4	135.4	144.9	146.4	151.9	145.9
5^{\prime}	118.5	118.8	153.0	119.3	116.0	117.2	127.6
6^{\prime}	120.8	122.3	104.8	117.8	120.2	124.5	114.9
7^{\prime}	128.2	31.1	128.4	31.0	31.1	155.4	72.5
8^{\prime}	129.1	34.1	130.3	31.1	31.2	127.9	55.2
9^{\prime}	61.5	60.1	61.5	67.8	67.9	196.1	62.6
$1^{\prime \prime}$	101.8	101.8	101.8	102.9	103.0	104.7	100.1
$2^{\prime \prime}$	73.6	73.6	73.6	73.4	73.5	75.0	73.2
$3^{\prime \prime}$	76.4	76.4	76.3	76.7	76.7	78.0	76.8
$4^{\prime \prime}$	69.8	69.7	69.9	70.0	70.0	71.6	69.6
$5^{\prime \prime}$	77.1	77.0	77.3	76.8	76.8	78.0	77.0
$6^{\prime \prime}$	60.8	60.7	60.8	61.0	61.1	62.8	60.6
$3-\mathrm{OMe}$	55.7	55.7	55.6	55.6	55.4	56.6	55.7
$3^{\prime \prime} / 5^{\prime}-\mathrm{OMe}$			56.0		55.6		55.5
$\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$	14.2	14.6	14.8	15.2	13.8		
a							

${ }^{a}{ }^{13} \mathrm{C}$ NMR data (δ) were measured in DMSO- d_{6} for $\mathbf{1 - 5}$ and 7 and $\mathrm{MeOH}-d_{4}$ for 6 at 125 MHz . The assignments were based on DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, and HMBC experiments. ${ }^{b}$ Data of the $3^{\prime \prime \prime \prime}$-methoxy-4"'"-hydroxyphenyl unit at C-7' of 7, $\delta 131.2$ (C-1"'), 113.9 (C-2"'), 146.5 (C-3 $\left.{ }^{\prime \prime \prime}\right), 144.7$ (C-4"'), 114.5 (C-5"'), 121.8 (C-6"), 55.4 ($\mathrm{OMe}-3^{\prime \prime \prime}$).
${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 a}$ and its acetonide $\mathbf{2 b}$ in CDCl_{3} showed $J_{7,8}$ values of 3.6 and 9.0 Hz (Table S1, Supporting Information), respectively, suggesting that 2 possessed an erythro relative configuration. ${ }^{1,17}$ The CD spectra of 2 and $2 \mathbf{a}$ displayed positive Cotton effects at 237 and 238 nm (Figures S2 and S3, Supporting Information), respectively, indicating that 2 and $2 \mathbf{a}$ possessed an $8 S$ configuration. ${ }^{18,19}$ Therefore, 2 was determined to be (-)$(7 R, 8 S)-4,7,9,3^{\prime}, 9^{\prime}$-pentahydroxy-3-methoxy-8-4'-oxyneolignan-3'O - β-D-glucopyranoside.

Compound 3 was obtained as an amorphous powder, and its HRESIMS at $m / z 577.1851[\mathrm{M}+\mathrm{Na}]^{+}$indicated the molecular formula $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{13}$. The UV, IR, and NMR spectroscopic features of $\mathbf{3}$ were similar to those of $\mathbf{1}$, except that the NMR signals of the $3^{\prime}, 4^{\prime}$-disubstituted trans-arylpropenoxy unit in 1 were replaced by those attributed to a $3^{\prime}, 4^{\prime}, 5^{\prime}$-trisubstitued trans-arylpropenoxy unit and a methoxy in $\mathbf{3}$ (Tables 1 and 2). These data indicated that $\mathbf{3}$ was an analogue of $\mathbf{1}$ with an additional methoxy at C-5'. This was confirmed by the HMBC spectrum of 3 , which showed correlations of $\mathrm{C}-3^{\prime}$ with $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-1^{\prime \prime}, \mathrm{C}-4^{\prime}$ with $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$, and C-5' with H-6' and the additional methoxy protons. An erythro configuration of $\mathbf{3}$ was confirmed by the $J_{7,8}(4.2 \mathrm{~Hz})$ of $\mathbf{3} \mathbf{a}$ in CDCl_{3}. In the CD spectra of $\mathbf{3}$ and $\mathbf{3 a}$, respective negative Cotton effects at 235 and 236 nm (Figures S2 and S3, Supporting Information) indicated that they had $8 R$ configuration. Therefore, 3 was determined to be $(-)-\left(7 S, 8 R, 7^{\prime} E\right)-4,7,9,3^{\prime}, 9^{\prime}$-pentahydroxy-$3,5^{\prime}$-dimethoxy- $8-4^{\prime}$-oxyneolign- 7^{\prime}-ene- $3^{\prime}-O-\beta$-D-glucopyranoside.

Compound 4 was assigned the molecular formula $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{12}$, as indicated by HRESIMS. The NMR data suggested that 4 was an isomer of $\mathbf{2}$. The anomeric proton of $\mathbf{4}$ was shielded $\Delta \delta 0.66 \mathrm{ppm}$ by comparison with that of $\mathbf{2}$, while two multiplets at $\delta 3.74$ (H$9^{\prime} \mathrm{a}$) and 3.38 ($\mathrm{H}-9^{\prime} \mathrm{b}$) in 4 replaced the triplet of $\mathrm{H}_{2}-9^{\prime}$ in 2. This indicated that the glucopyranosyloxy moiety was located at $\mathrm{C}-9^{\prime}$ in 4 , which was confirmed by the HMBC experiment of 4 showing correlations from both $\mathrm{H}-9^{\prime} \mathrm{a}$ and $\mathrm{H}-9^{\prime} \mathrm{b}$ to $\mathrm{C}-1^{\prime \prime}$ and from $\mathrm{H}-1^{\prime \prime}$ to

C-9'. The $J_{7,8}(3.6 \mathrm{~Hz})$ of $\mathbf{4 a}$ in CDCl_{3} (Table S1) suggested that $\mathbf{4}$ had an erythro-configuration. In the CD spectra of 4 and $\mathbf{4 a}$, a positive Cotton effect at 238 nm (Figures S2 and S3) suggested that they both had an $8 S$ configuration. Consequently, 4 was determined to be $(-)-(7 R, 8 S)-4,7,9,3^{\prime}, 9^{\prime}$-pentahydroxy-3-methoxy-$8-4^{\prime}$-oxyneolignan- $9^{\prime}-O-\beta$-D-glucopyranoside.

The NMR data of 5 (Tables 1 and 2) were in good agreement with those of $(-)-(7 R, 8 R)-4,7,9,9^{\prime}$-tetrahydroxy-3,3'-dimethoxy-8-$O-4^{\prime}$-neolignan- $9^{\prime}-O-\beta$-D-glucopyranoside. ${ }^{15}$ However, the optical rotation and CD data of $\mathbf{5}$ and its aglycone 5a (Figures S2 and S3) were opposite of that reported. Therefore, the structure of 5 was assigned as $(+)-(7 S, 8 S)-4,7,9,9^{\prime}$-tetrahydroxy-3, 3^{\prime}-dimethoxy-8-4'-oxyneolignan- $9^{\prime}-O-\beta$-D-glucopyranoside. This was supported by the ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{5 a}$ and its acetonide $\mathbf{5 b}$ in CDCl_{3}, which displayed $J_{7,8}$ values of 8.4 and $\sim 0.0 \mathrm{~Hz}$ (Table S2), respectively.

Compound 6 was obtained as an amorphous powder, and its IR spectrum showed absorption bands for $\mathrm{OH}\left(3379 \mathrm{~cm}^{-1}\right)$, conjugated CO ($1662 \mathrm{~cm}^{-1}$), and aromatic (1595 and $1511 \mathrm{~cm}^{-1}$) groups. The molecular formula $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{10}$ of 6 was indicated by HRFABMS. The NMR spectra of 6 in $\mathrm{MeOH}-d_{4}$ displayed resonances due to glyceryl, $3^{\prime}, 4^{\prime}$-disubstituted trans-phenylpropenal, and β-glucopyranosyl moieties and to a methoxy signal (Tables 1 and 2). Enzymatic hydrolysis of 6 yielded D-glucose and 6a. The ${ }^{1} \mathrm{H}$ NMR and ESIMS spectroscopic data of $\mathbf{6 a}$ were consistent with those of 2-\{2-methoxy-4-[(E)-formylvinyl]phenoxyl\}propan-1,3-diol. ${ }^{20}$ The HMBC experiment of 6 revealed that it was $1-O-\beta$-D-glucopyra-nosyl-2-\{2-methoxy-4-[(E)-formylvinyl]phenoxyl\}propan-3-ol. The negative optical rotation of 6 suggested that it had a $2 R$ configuration. ${ }^{21}$ Therefore, 6 was determined to be as $(-)-(2 R)-1-O-\beta-\mathrm{D}-$ glucopyranosyl-2-\{2-methoxy-4-[(E)-formylvinyl]phenoxyl\} propane-3-ol.

Compound 7 was obtained as a gum, and its molecular formula $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{14}$ was indicated by HRESIMS. The IR spectrum of 7 displayed absorption bands for $\mathrm{OH}\left(3426 \mathrm{~cm}^{-1}\right)$ and aromatic ring (1608 and $1514 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of 7 showed signals due to two 1,3,4-trisubstituted phenyl groups, a 1,3,4,5tetrasubstituted phenyl group, and three methoxy groups. In addition, it showed signals attributed to three oxymethine protons at $\delta 5.46(\mathrm{H}-7), 4.83\left(\mathrm{H}-7^{\prime}\right)$, and $4.87\left(\mathrm{H}-1^{\prime \prime}\right)$, partially overlapped methylene and methine protons between $\delta 3.14$ and 3.70 , and broad signals due to eight OH protons between $\delta 4.10$ and 5.30. In addition to carbon resonances corresponding to the above units, the ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of 7 displayed carbon signals attributed to two oxymethines at $\delta 86.5(\mathrm{C}-7)$ and $72.5\left(\mathrm{C}-7^{\prime}\right)$, two oxymethylenes at $\delta 63.4$ (C-9) and 62.6 (C-9'), and two aliphatic methines at $\delta 53.5(\mathrm{C}-8)$ and $55.2\left(\mathrm{C}-8^{\prime}\right)$. These spectroscopic data suggested that 7 was a dihydro[b]benzofuran neolignan glycoside with an additional tri- or disubstituted aryl group. ${ }^{22}$ Enzymatic hydrolysis of 7 produced D-glucose and 7a, and the ${ }^{1} \mathrm{H}$ NMR data of $7 \mathbf{a}$ were in agreement with those of leptolepisol C isolated from Larix leptolepis. ${ }^{23}$ This indicated that 7 was leptolepisol C β-Dglucoside, which was confirmed by HMQC and HMBC experiments of 7. In the HMBC spectrum, a correlation from the anomeric proton to $\mathrm{C}-4$ indicated unequivocally that the β-glycopyranosyl moiety was located at $\mathrm{C}-4$. Consequently, 7 was determined to be leptolepisol C 4-O- β-D-glucopyranoside. The CD spectra of 7 and 7a did not give any useful Cotton effect due to interaction among three aromatic rings, and the absolute configuration of 7 and $7 \mathbf{a}$ remains to be determined.

Compound 8 showed IR absorption bands for $\mathrm{OH}\left(3374 \mathrm{~cm}^{-1}\right)$ and aromatic (1612 and $1513 \mathrm{~cm}^{-1}$) functional groups. The ESIMS of 8 gave $[\mathrm{M}+\mathrm{Na}]^{+}$and $[\mathrm{M}+\mathrm{K}]^{+}$peaks at $m / z 429$ and 445 . The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in DMSO- d_{6} showed a two-proton aromatic singlet at $\delta 6.64$, a six-proton methoxy singlet at $\delta 3.75$, two deshielded oxymethine doublets at $\delta 4.63(\mathrm{H}-7)$ and $4.25(\mathrm{H}-$ 1^{\prime}), and partially overlapped oxymethylene and/or oxymethine multiplets integrated for nine protons between $\delta 3.00$ and 3.75

Table 3. NMR Data for Compounds 8 and $\mathbf{9}^{a}$
8
9

${ }^{a}{ }^{1} \mathrm{H}$ NMR data (δ) were measured in DMSO- d_{6} at 400 MHz . Proton coupling constants (J) in Hz are given in parentheses. ${ }^{13} \mathrm{C}$ NMR data (δ) were measured in DMSO- d_{6} at 125 MHz .
(Table 3). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra of $\mathbf{8}$ displayed characteristic signals for 1-C-syringylglycerol and β-glucopyranosyl moieties (Table 3). Enzymatic hydrolysis of $\mathbf{8}$ with β-glucosidase yielded 8a with $[\alpha]-19.6$ (c $0.25, \mathrm{MeOH})$ and D -glucose. The NMR data of 8a (Tables S11 and S13) were in good agreement with those of erythro-1-C-syringylglycerol, ${ }^{24,25}$ indicating that it was (-)-erythro-1-C-syringylglycerol β-D-glucopyranoside. Comparison of the NMR data of $\mathbf{8}$ and $\mathbf{8 a}$ indicated that C-8 of $\mathbf{8}$ was significantly deshielded by $\Delta \delta 9.3 \mathrm{ppm}$. This suggested that the β-D-glucopyranosyl moiety was located at $\mathrm{C}-8$ of (- -erythrosyringylglycerol in 8. Since erythro-arylglycerols with $7 R, 8 S$ configuration were reported to have negative $[\alpha]_{\mathrm{D}}$ values, ${ }^{26,27}$ the absolute configuration at $\mathrm{C}-7$ and $\mathrm{C}-8$ of $\mathbf{8 a}$ was assigned as $7 R, 8 S$. Thus, the structure of $\mathbf{8}$ was determined to be $(-)-(7 R, 8 S)$ syringylglycerol 8-O- β-D-glucopyranoside.

Compound 9 gave $[\mathrm{M}+\mathrm{Na}]^{+}$and $[\mathrm{M}+\mathrm{K}]^{+}$peaks at $m / z 399$ and 415 in the positive ESIMS. The IR and NMR data were similar to those of $\mathbf{8}$ except that the syringyl unit in $\mathbf{8}$ was replaced by a guaiacyl unit in 9 . This suggested that 9 was a demethoxy derivative of 8. Hydrolysis of 9 yielded 9 a, with $[\alpha]-12.4(c 0.33, \mathrm{MeOH})$, and D-glucose. The NMR data of $\mathbf{9 a}$ (Tables S12 and S13) were identical to those of $(7 S, 8 R)$-guaiacylglycerol except for an opposite optical rotation $([\alpha]+11))^{8,27}$ Therefore, 9 was determined to be (-)-(7R,8S)-guaiacylglycerol 8-O- β-D-glucopyranoside.

The known compounds were identified by comparison of spectroscopic data with those reported in the literature as $(-)-\left(7 R, 8 S, 7^{\prime} E\right)$ -$4,7,9,9^{\prime}$-tetrahydroxy-3,3'-dimethoxy-8-4'-oxyneolign- 7^{\prime}-ene- 9^{\prime} - $O-\beta$ -D-glucopyranoside (hyuganoside IIIa, 10), ${ }^{11}$ (-)-(7S,8S, $\left.7^{\prime} E\right)-4,7,9,9^{\prime}$ -tetrahydroxy-3, 3^{\prime}-dimethoxy-8-4'-oxyneolign-7'-ene-9'-O- β-Dglucopyranoside (hyuganoside IIIb, 11), ${ }^{11}(+)-(7 S, 8 S)$-syringylglycerol 8 -O- β-D-glucopyranoside (12), ${ }^{7}(+)-(7 S, 8 S)$-guaiacylglycerol $8-O-\beta$ -D-glucopyranoside (13), ${ }^{30}(-)-(7 S, 8 R)$-guaiacylglycerol $9-O-\beta$-D-glucopyranoside (14), ${ }^{8}(-)-(7 R, 8 R)$-guaiacylglycerol $9-O-\beta$-D-glucopyranoside (15), ${ }^{8}(-)-(7 R, 8 R)$-syringylglycerol $9-O-\beta$-D-glucopyranoside (16), ${ }^{31}(-)-(7 R, 8 R)$-guaiacylglycerol $7-O-\beta$-D-glucopyranoside, ${ }^{32}(-)$ tachioside, ${ }^{33}$ (- -liriodendrin (17), ${ }^{34}(-)$-sweroside, ${ }^{35}(-)$-11,13dihydrodeacylcynaropicrin 3-O- β-D-glucopyranoside, ${ }^{36}$ (- -3,5-di-methoxy-4-hydroxyphenyl β-D-glucopyranoside (incorrect nomenclature was given in the literature ${ }^{37}$), $(-)-\left(1^{\prime} R\right)-1^{\prime}$-(3-hydroxy-4-methoxyphe-nyl)ethane-1', 2^{\prime}-diol 3-O- β-d-glucopyranoside, ${ }^{38}$ (-)-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone 3-O- β-D-glucopyranoside, ${ }^{39}$ (-)-2-hydroxy-5-(2-hydroxyethyl)phenyl β-D-glucopyranoside, ${ }^{32}(-)$ -2-methoxy-4-(1-propionyl)phenyl β-D-glucopyranoside, ${ }^{40}$ and (-)-4-propionyl-2,6-dimethoxyphenyl β-D-glucopyranoside. ${ }^{41}$ The absolute configurations of $\mathbf{1 0}, \mathbf{1 1}$, and $\mathbf{1 2}$ were determined on the basis of CD
spectra and/or optical rotations of their aglycones, and $\mathbf{1 3}$ was obtained as a natural product for the first time.

Coupling constants ($J_{7,8}$) of the deshielded benzylic proton (H-7) signal in the ${ }^{1} \mathrm{H}$ NMR spectra of the acetates of erythro ($J_{7,8} \leq 5.3 \mathrm{~Hz}$) and threo ($J_{7,8} \geq 6.3 \mathrm{~Hz}$) 8-4'-oxyneolignan aglycones and glycosides, ${ }^{12,18}$ as well as acetonide derivatives of threo ($J_{7,8}<2.0 \mathrm{~Hz}$) and erythro ($J_{7,8}>8.0 \mathrm{~Hz}$) 8-4'oxyneolignan aglycones, ${ }^{11,17}$ unambiguously distinguished erythro and threo isomers in CDCl_{3}. However, there were several cases where the values of $J_{7,8}$ of 8-4'-oxyneolignans were directly applied for the differentiation of erythro and threo isomers without derivatization. ${ }^{5,6,14 a, 15,42}$ A systematic analysis of ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1 - 5}$ in DMSO- d_{6} (Table 1) and 1a-5a, 10a, 11a, 5, 10, and 11 in different solvents (Tables S1-S5, Supporting Information), in combination with the data of $8-4^{\prime}$-oxyneolignan derivatives in the literature, ${ }^{11-15,17,44}$ indicated that the values of $J_{7,8}$ were variable in different solvents due to possible dynamic conformational changes. ${ }^{43}$ In $\mathrm{Me}_{2} \mathrm{CO}-d_{6}+\mathrm{D}_{2} \mathrm{O}$ or CDCl_{3}, the $J_{7,8}$ values of the threo 8-4'-oxyneolignan aglycones 5a and 11a (6.0 and 6.6 Hz in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}+\mathrm{D}_{2} \mathrm{O}$ and 8.4 and 8.4 Hz in CDCl_{3}, respectively) were larger than those of the erythro analogues 1a, 2a (4a), 3a, and 10a (4.8, 4.8, 3.0, and 5.4 Hz in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}+\mathrm{D}_{2} \mathrm{O}$ and $4.2,3.6,4.2$, and 4.2 Hz in CDCl_{3}, respectively). Meanwhile, in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, the $J_{7,8}$ values of the glycosides $\mathbf{5}$ and $\mathbf{1 1}$ (6.0 and 5.4 Hz) were larger than that of the erythro analogue $\mathbf{1 0}(4.8 \mathrm{~Hz})$. However, in $\mathrm{CD}_{3} \mathrm{OD}$, the $J_{7,8}$ values of the threo aglycones 5a and 11a (6.0 and 5.4 Hz) were smaller than or equal to the erythro aglycones $\mathbf{1 0 a}(6.0 \mathrm{~Hz})$, and in DMSO- $d_{6}, \mathrm{D}_{2} \mathrm{O}$, and $\mathrm{CD}_{3} \mathrm{OD}$, the $J_{7,8}$ values of threo glycosides 5 and $\mathbf{1 1}$ were smaller than or equal to those of the erythro glycosides. In addition, it was clear that the differences of the $J_{7,8}$ values between threo and erythro aglycones in $\mathrm{Me}_{2} \mathrm{CO}$ $d_{6}+\mathrm{D}_{2} \mathrm{O}$ and glycosides in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ are small and close to the range of NMR instrument errors. Therefore, the direct application of the $J_{7,8}$ values was ambiguous to differentiate erythro and threo $8-4^{\prime}$-oxyneolignans with the exception of aglycone acetonides ($J_{7,8}>8.0 \mathrm{~Hz}$ for erythro, and $J_{7,8}<2.0 \mathrm{~Hz}$ for threo) and glycoside acetates ($J_{7,8} \leq 5.3 \mathrm{~Hz}$ for erythro, and $J_{7,8} \geq 6.3$ Hz for threo) in CDCl_{3}, as well as aglycones in $\mathrm{CDCl}_{3}\left(J_{7,8} \leq\right.$ 5.0 Hz for erythro, and $J_{7,8} \geq 8.0 \mathrm{~Hz}$ for threo).

In order to evaluate a possible application of the ${ }^{13} \mathrm{C}$ NMR spectroscopic data for distinguishing erythro and threo 8-4'oxyneolignan derivatives, the ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 - 5}$ in DMSO- d_{6} (Table 2) and 1a, 2a (4a), 5a, 10a, 11a, 2, 5, 10, and $\mathbf{1 1}$ in different solvents (Tables S6 and S7, Supporting Information), together with
the data of $8-4^{\prime}$-oxyneolignan derivatives in the literature, ${ }^{11,15,17,44 a}$ were investigated. The chemical shift difference between $\mathrm{C}-8$ and C-7 ($\left.\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}\right)$ was used in the discussion to eliminate the systematic errors. The $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values of the erythro and threo isomers ($\mathbf{1 0}$ and 11, and 10a and 11a) were variable in different solvents. In DMSO- $d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, or $\mathrm{CD}_{3} \mathrm{OD}$, the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values of the erythro glycoside $10(12.1,12.6$, or 12.1 ppm$)$ were smaller than those of the threo isomer 11 (13.4, 13.9, or 13.1 ppm$)$. Meanwhile, in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}, \mathrm{CD}_{3} \mathrm{OD}$, or CDCl_{3}, the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values of the erythro aglycone 10a $(12.9,12.1$, or 14.6 ppm$)$ were smaller than those of the threo isomer 11a $(14.7,13.2$, or 15.5 ppm$)$. These were fully consistent with data reported in the literature. ${ }^{11,15,17,44 \mathrm{a}}$ However, in $\mathrm{D}_{2} \mathrm{O}$ the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ value of the erythro glycoside $\mathbf{1 0}(11.0 \mathrm{ppm})$ was larger than that of the threo isomer $\mathbf{1 1}(10.7 \mathrm{ppm})$, and in $\mathrm{CD}_{3} \mathrm{OD}$ the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ value of the erythro glycoside $2(13.7 \mathrm{ppm})$ was larger than that of its threo isomer $(12.9 \mathrm{ppm}) .{ }^{15}$ In the same solvent, the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values of the $8-4^{\prime}$-oxyneolignan analogues $[\mathbf{1}-\mathbf{5}, \mathbf{1 a}, \mathbf{2 a}(\mathbf{4 a})$, and 10a] were variable due to substituent differences at $\mathrm{C}-3^{\prime}$ and/or $\mathrm{C}-5^{\prime}$. Therefore, the $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values may be useful to distinguish the erythro and threo 8-4'-oxyneolignan isomers when the data are obtained in the same solvent.

The $J_{7,8}$ values of arylglycerol acetates were used to distinguish threo- $\left(J_{7,8}>7.0 \mathrm{~Hz}\right)$ and erythro- $\left(J_{7,8}<6.5 \mathrm{~Hz}\right)$ arylglycerols, ${ }^{29,30,44 \mathrm{~b}, 45}$ and our previous investigation indicated that the chemical shift difference of $\mathrm{C}-7$ and $\mathrm{C}-8\left(\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}\right)$ was also applicable to differentiate threo- and erythro-arylglycerols without substituent(s) at C-7 and/or C-8 of the glycerol moiety. ${ }^{25}$ A systematic analysis of the NMR data of $\mathbf{8}, \mathbf{9}, \mathbf{1 2}$, and 13 in $\mathrm{D}_{2} \mathrm{O}, \mathrm{DMSO}-d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, or $\mathrm{CD}_{3} \mathrm{OD}$ (Tables $\mathrm{S} 8-\mathrm{S} 10$, Supporting Information) and the data of erythro- and threo-arylglycerol $8-O-\beta$-D-glucopyranosides in the literature ${ }^{7-9,29-31}$ (the relative configurations at $\mathrm{C}-7$ and $\mathrm{C}-8$ were wrongly assigned in ref 9) indicated that the values of both $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ were variable in different solvents. However, in DMSO- $d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, or $\mathrm{CD}_{3} \mathrm{OD}$ except for $\mathrm{D}_{2} \mathrm{O}$, the differences of $J_{7,8}$ and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ between erythro- and threo-arylglycerol 8-O- β -D-glucopyranosides were significant and may be directly applicable to distinguish erythro- $\left(J_{7,8} \leq 4.4 \mathrm{~Hz}\right.$ in $\mathrm{DMSO}-d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, or $\mathrm{CD}_{3} \mathrm{OD}, \Delta \delta_{\mathrm{C} 8-\mathrm{C} 7} \leq 12.5 \mathrm{ppm}$ in DMSO- d_{6} or $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ $<11.0 \mathrm{ppm}$ in $\mathrm{CD}_{3} \mathrm{OD}$) and threo-arylglycerol 8-O- β-D-glucopyranosides $\left(J_{7,8} \geq 6.0 \mathrm{~Hz}\right.$ in $\mathrm{DMSO}-d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, or $\mathrm{CD}_{3} \mathrm{OD}, \Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ $\geq 14.0 \mathrm{ppm}$ in DMSO- d_{6} or $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}>12.0 \mathrm{ppm}$ in $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$. The $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ of the aglycones $\mathbf{8 a}, \mathbf{9 a}, \mathbf{1 2} \mathbf{a}$, and 13a in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, and DMSO- d_{6} were consistent with those of our previously reported data for erythro- $\left(\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}<1.0\right.$ ppm in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}, \mathrm{CD}_{3} \mathrm{OD}$, or $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, and $\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7} \leq 1.4$ in DMSO- d_{6}) and threo- $\left(\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7} \geq 2.0 \mathrm{ppm}\right.$ in all tested solvents $)$ arylglycerols without substituent(s) at C-7 and/or C-8, ${ }^{25}$ although the values of $J_{7,8}$ were indistinguishable among the aglycones without substituent(s) at C-7 and/or C-8 (Tables S11-S13). In addition, an investigation of the NMR data of three known erythroand threo-arylglycerol 9-O- β-D-glucopyranosides $(\mathbf{1 4 - 1 6})$ (Tables S14 and S15, Supporting Information) in different solvents, together with the data of erythro- and threo-arylglycerol $9-O-\beta$-D-glucopyranosides ${ }^{7-9,28,31}$ (the relative configurations at $\mathrm{C}-7$ and $\mathrm{C}-8$ were wrongly assigned in refs 7 and 9) indicated that there was no significant difference among $J_{7,8}$ values of erythro- and threoarylglycerol 9- $O-\beta$-D-glucopyranosides. However, in DMSO- d_{6} or $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ except for in $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{CD}_{3} \mathrm{OD} \Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}$ values are applicable to distinguish erythro- $\left(\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7} \leq 0.5 \mathrm{ppm}\right.$ in $\mathrm{DMSO}-d_{6}$ or $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ and threo- $\left(\Delta \delta_{\mathrm{C} 8-\mathrm{C} 7}>1.0 \mathrm{ppm}\right.$ in $\mathrm{DMSO}-d_{6}$ or $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$ arylglycerol 9- $O-\beta$-D-glucopyranosides.

The neuroprotective activity of the purified compounds against glutamate-induced neurotoxicity in cultures of PC12 cells was evaluated by the MTT assay. As shown in Table 4, treatment with glutamate $(20 \mu \mathrm{M})$ resulted in significant inhibition of MTT reduction. However, exposure of compounds 4 and 17 at the concentration of $10^{-5} \mathrm{M}$ for 24 h remarkably attenuated glutamate-

Table 4. Activities of Selected Compounds to GlutamateInduced Neurotoxicity in PC12 Cells ${ }^{a}$

compound	relative protection $(\%)$
control	100 ± 1.9
glutamate-treated	$0.0 \pm 2.8^{\#}$
NGF	$108.2 \pm 2.1^{* *}$
$\mathbf{4}$	$36.4 \pm 3.1^{*}$
$\mathbf{9}$	$-46.6 \pm 2.2^{* *}$
$\mathbf{1 2}$	$-28.4 \pm 1.9^{* *}$
$\mathbf{1 3}$	$-32.9 \pm 1.9^{* *}$
$\mathbf{1 7}$	$20.5 \pm 1.8^{* *}$

${ }^{a}$ The data are expressed as mean $\pm \mathrm{SD}$ of three independent experiments. (${ }^{\#} p<0.05$ vs control; ${ }^{*} p<0.05$, ${ }^{* *} p<0.01$ vs glutamatetreated group).
induced cytotoxicity, whereas, 11-13 increased the cell damage. The other compounds were all inactive.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a Rudolph Research Autopol III automatic polarimeter. UV spectra were measured on a Cary 300 spectrophotometer. CD spectra were recorded on a JASCO J-810 spectropolarimeter. IR spectra were recorded as KBr disks on a Nicolet 5700 FT-IR instrument. NMR spectra were obtained at 400,500 , or 600 MHz for ${ }^{1} \mathrm{H}$ and 100,125 , or 150 MHz for ${ }^{13} \mathrm{C}$, respectively, on Inova 400,500 , and 600 MHz spectrometers in DMSO- $d_{6}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{Me}_{2} \mathrm{CO}-d_{6}, \mathrm{D}_{2} \mathrm{O}$, or CDCl_{3} with solvent peaks (or TMS, in the case of $\mathrm{D}_{2} \mathrm{O}$) used as references. ESIMS data were measured with a Q-Trap LC/MS/MS (Turbo Ionspray Source) spectrometer. HRFABMS and HRESIMS data were respectively measured using a Micromass Autospec-Ultima ETOF and an AccuToFCS JMS-T100CS spectrometer. Column chromatography (CC) was performed with silica gel (200-300 mesh, Qingdao Marine Chemical Inc. China) and Sephadex LH-20 (Pharmacia Biotech AB, Uppsala Sweden). HPLC separation was performed on an instrument consisting of a Waters 600 controller, a Waters 600 pump, and a Waters 2487 dual λ absorbance detector with an Alltima ($250 \times 10 \mathrm{~mm}$ i.d.) preparative column packed with $\mathrm{C}_{18}(5 \mu \mathrm{M})$. TLC was carried out with glass precoated silica gel GF_{254} plates. Spots were visualized under UV light or by spraying with $7 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $95 \% \mathrm{EtOH}$ followed by heating.

Plant Material. The root of I. cirrhosa $(6.0 \mathrm{~kg})$ was collected at Dayao Moutain, Guangxi Province, China, in August 2002. The plant was identified by Mr. Guang-Ri Long (Guangxi Forest Administration, Guangxi 545005, China). A voucher specimen (no. YG02011) was deposited at the Herbarium of the Department of Medicinal Plants, Institute of Materia Medica, Beijing, China.
Extraction and Isolation. The air-dried root of I. cirrhosa (6 kg) was powdered and extracted with $95 \% \mathrm{EtOH}(3 \times 15 \mathrm{~L})$ at room temperature for $3 \times 48 \mathrm{~h}$. The ethanolic extract was evaporated under reduced pressure to yield a dark brown residue (640 g). The residue was suspended in $\mathrm{H}_{2} \mathrm{O}(2000 \mathrm{~mL})$ and then partitioned with EtOAc (5 $\times 2000 \mathrm{~mL}$). The aqueous phase was applied to a HDP100 macroporous adsorbent resin (1000 g , dried weight) column. A successive elution of the column with $\mathrm{H}_{2} \mathrm{O}, 30 \% \mathrm{EtOH}, 60 \% \mathrm{EtOH}$, and $95 \% \mathrm{EtOH}$ (5000 mL each) yielded four corresponding portions after removing solvents. The portion (24.0 g) eluted by $30 \% \mathrm{EtOH}$ was separated by MPLC over reversed-phase silica gel eluting with a gradient of increasing $\mathrm{MeOH}(0-60 \%)$ in $\mathrm{H}_{2} \mathrm{O}$ to give four fractions (A-D) on the basis of TLC analysis. Subsequent separation of fraction A (7.5 g) over Sephadex LH-20 eluted with $\mathrm{H}_{2} \mathrm{O}$ gave four subfractions $\left(\mathrm{A}_{1}-\mathrm{A}_{4}\right)$. Subfraction $\mathrm{A}_{2}(0.98 \mathrm{~g})$ was further fractionated via silica gel CC, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(8: 1)$, to yield two fractions $\left(\mathrm{A}_{2-1}, \mathrm{~A}_{2-2}\right)$. Fraction A_{2-1} $(0.31 \mathrm{~g})$ was subjected to reversed-phase preparative HPLC, using a mobile phase of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$ (6.5:93.5:0.5), to afford $\mathbf{8}$ (110 $\mathrm{mg}), \mathbf{9}(51 \mathrm{mg}), \mathbf{1 2}(15 \mathrm{mg})$, and $\mathbf{1 3}(15 \mathrm{mg})$. Fraction B (13.0 g) was separated by normal silica gel CC , eluting with a gradient of increasing $\mathrm{MeOH}(10-50 \%)$ in CHCl_{3}, to afford five fractions ($\mathrm{B}_{1}-\mathrm{B}_{5}$). $\mathrm{B}_{1}(4.60$ $g)$ was further separated into five subfractions $\left(\mathrm{B}_{1-1}-\mathrm{B}_{1-5}\right)$ by reversedphase flash chromatography using step-gradient elution with increasing $\mathrm{MeOH}(0-30 \%)$ in $\mathrm{H}_{2} \mathrm{O}$. Fraction $\mathrm{B}_{1-2}(0.68 \mathrm{~g})$ was subjected to CC over Sephadex LH-20, eluting with $\mathrm{H}_{2} \mathrm{O}$, to give four mixtures ($\mathrm{B}_{1-2-1}-\mathrm{B}_{1-2-4}$). $\mathrm{B}_{1-2-2}(96 \mathrm{mg})$ was purified by reversed-phase prepara-

Chart 1

tive HPLC using the mobile phase of $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$ (10:90:0.5) to afford $6(16 \mathrm{mg})$. Fraction $\mathrm{B}_{1-2-3}(54 \mathrm{mg})$ was separated by reversed-phase preparative HPLC using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}$ (21: $79: 0.5)$ to yield $\mathbf{1}(13 \mathrm{mg})$ and $2(15 \mathrm{mg}) . \mathrm{B}_{1-4}(0.75 \mathrm{~g})$ was subjected to CC over Sephadex LH-20 with $\mathrm{H}_{2} \mathrm{O}$ as eluent to give four mixtures $\left(B_{1-4-1}-B_{1-4-4}\right)$. Fraction $B_{1-4-3}(243 \mathrm{mg})$ was separated by reversedphase preparative HPLC with the mobile phase $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(30: 70)$ to yield $\mathbf{3}(10 \mathrm{mg}), \mathbf{4}(12 \mathrm{mg}), \mathbf{5}(26 \mathrm{mg}), \mathbf{7}(11 \mathrm{mg}), \mathbf{1 0}(17 \mathrm{mg})$, and 11 (21 mg).
(-)-(7S,8R, $\left.7^{\prime} E\right)-4,7,9,3^{\prime}, 9^{\prime}$-Pentahydroxy-3-methoxy-8-4'-oxyneo-lign-7'-ene-3'-O- $\boldsymbol{\beta}$-d-glucopyranoside (1): amorphous solid; $[\alpha]^{20}{ }_{\mathrm{D}}$ -6.2 (c 0.08, MeOH); UV (MeOH) $\lambda_{\max }(\log \epsilon) 205$ (4.3), 261 (3.9) $\mathrm{nm} ; \mathrm{CD}(\mathrm{MeOH}) 221(\Delta \epsilon-0.82), 233(\Delta \epsilon-2.08), 250(\Delta \epsilon+0.07)$ nm ; IR (KBr) $\nu_{\max } 3358,2920,1602,1509,1453,1267,1072,1024$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 2; ESIMS m/z $547[\mathrm{M}+\mathrm{Na}]^{+}$ and $563[\mathrm{M}+\mathrm{K}]^{+}$; HRFABMS $m / z 547.1801[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{12} \mathrm{Na}, 547.1791$).
(-)-(7R,8S)-4,7,9,3', 9^{\prime}-Pentahydroxy-3-methoxy-8-4'-oxyneolig-nan-3'- $\boldsymbol{O} \boldsymbol{-} \boldsymbol{\beta}$-d-glucopyranoside (2): amorphous powder; $[\boldsymbol{\alpha}]^{20}{ }_{\mathrm{D}}-17.6$ (c 0.45, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 207$ (4.4), 278 (3.6) nm; $\mathrm{CD}(\mathrm{MeOH}) 228(\Delta \epsilon-2.34), 237(\Delta \epsilon+1.54), 244(\Delta \epsilon-0.18) \mathrm{nm} ;$ IR $(\mathrm{KBr}) \nu_{\max } 3381,1604,1509,1270,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, 500 MHz) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data,
see Table 2; ESIMS $m / z 549[\mathrm{M}+\mathrm{Na}]^{+}$and $565[\mathrm{M}+\mathrm{K}]^{+}$; HRESIMS $m / z 549.1963[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{12} \mathrm{Na} 549.1948$).
(-)-(7S,8R,7'E)-4,7,9,3',9'-Pentahydroxy-3,5'-dimethoxy-8-4'-oxy-neolign- $\boldsymbol{7}^{\prime}$-ene- $\mathbf{3}^{\prime}$ - $\boldsymbol{O}-\boldsymbol{\beta}$-d-glucopyranoside (3): amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-9.0(c 0.10, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 204$ (4.3), 221 (4.2), 269 (3.8) nm; CD (MeOH) 226 ($\Delta \epsilon-0.46$), 235 ($\Delta \epsilon-2.84$), 250 $(\Delta \epsilon+0.72) \mathrm{nm}$; IR (KBr) $v_{\max } 3422,1590,1508,1076,1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz})$ data, see Table 2; ESIMS m/z $577[\mathrm{M}+\mathrm{Na}]^{+}$, $593[\mathrm{M}+$ $\mathrm{K}]^{+}$, and $553[\mathrm{M}-\mathrm{H}]^{-}$; HRESIMS m / z 577.1851, $[\mathrm{M}+\mathrm{Na}]^{+}$(cacld for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{13} \mathrm{Na} 577.1897$).
(-)-(7R,8S)-4,7,9,3', 9^{\prime}-Pentahydroxy-3-methoxy-8-4'-oxyneolig-nan-9'-O- $\boldsymbol{\beta}$-d-glucopyranoside (4): colorless gum; $[\alpha]^{20}{ }_{\mathrm{D}}-12.5$ (c $0.08, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 207$ (4.4), 280 (3.7) nm; CD $(\mathrm{MeOH}) 226(\Delta \epsilon-1.52), 238(\Delta \epsilon+1.14), 250(\Delta \epsilon-0.12) \mathrm{nm}$; IR (KBr) $v_{\max } 3413,1604,1512,1277,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500$ MHz) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 2; ESIMS $m / z 549[\mathrm{M}+\mathrm{Na}]^{+}, 565[\mathrm{M}+\mathrm{K}]^{+}$, and $525[\mathrm{M}-$ $\mathrm{H}]^{-} ;$HRESIMS $m / z 549.1963[\mathrm{M}+\mathrm{Na}]^{+}$(cacld for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{12} \mathrm{Na}$ 549.1948).
(+)-(7S,8S)-4,7,9,9'-Tetrahydroxy-3,3'-dimethoxy-8-4'-oxyneolig-nan- $\boldsymbol{9}^{\prime}$ - \boldsymbol{O}-D-glucopyranoside (5): amorphous solid; $[\alpha]^{20}{ }_{\mathrm{D}}+2.0$ (c 1.20, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \epsilon) 230(4.1), 280(3.4) \mathrm{nm} ; \mathrm{CD}(\mathrm{MeOH})$ $226(\Delta \epsilon+0.48), 236(\Delta \epsilon+1.75), 250(\Delta \epsilon+0.15)$; IR $(\mathrm{KBr}) \nu_{\max } 3283$,

1558, 1513, 1259, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 2; ESIMS $m / z 563[\mathrm{M}+\mathrm{Na}]^{+}$and $539[\mathrm{M}-\mathrm{H}]^{-}$; HRESIMS m/z. 563.2097 [M $+\mathrm{Na}]^{+}$(cacld for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{12} \mathrm{Na} 563.2104$).
(-)-(2R)-1-O- β-d-Glucopyranosyl-2-\{2-methoxy-4-[(E)-formyl-vinyl]phenoxyl\}propane-3-ol (6): yellowish, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}$ -7.5 (c 0.08, MeOH); UV (MeOH) $\lambda_{\max }(\log \epsilon) 202$ (4.4), 224 (4.3), 237 (4.3), 334 (4.5) nm; IR (KBr) $\nu_{\max } 3379,2921,1662,1595,1511$, 1272, 1137, $1078 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right)$ data, see Table 1; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right)$ data, see Table 2; ESIMS m/z. 437 $[\mathrm{M}+\mathrm{Na}]^{+}$and $453[\mathrm{M}+\mathrm{K}]^{+}$; HRFABMS $m / z 437.1406[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Na}, 437.1424$).

Leptolepisol C 4- \boldsymbol{O} - $\boldsymbol{\beta}$-D-glucopyranoside (7): colorless gum; $[\alpha]^{20}{ }_{\mathrm{D}}$ -6.0 (c 0.10, MeOH); UV (MeOH) $\lambda_{\max }(\log \epsilon) 208$ (4.8), 279 (4.0) nm ; IR (KBr) $\nu_{\max } 3426,1608,1514,1268,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$) data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125$ $\mathrm{MHz})$ data, see Table 2; ESIMS $m / z 683[\mathrm{M}+\mathrm{Na}]^{+}, 699[\mathrm{M}+\mathrm{K}]^{+}$, and $659[\mathrm{M}-\mathrm{H}]^{-}$; HRESIMS $m / z 683.2338[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{14} \mathrm{Na} 683.2316$)
(-)-(7R,8S)-Syringylglycerol 8- $\boldsymbol{O}-\boldsymbol{\beta}$-d-glucopyranoside (8): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-14.3(c 0.30, \mathrm{MeOH})$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ $(\log \epsilon) 211(4.2), 232(3.7), 271$ (3.4) nm; IR (KBr) $v_{\max } 3374,1612$, 1513, 1228, 1073, $1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 3; ESIMS m/z. 429 $[\mathrm{M}+\mathrm{Na}]^{+}$and $445[\mathrm{M}+\mathrm{K}]^{+}$.
(-)-(7R,8S)-Guaiacylglycerol 8-O- $\boldsymbol{\beta}$-D-glucopyranoside (9): white, amorphous powder; $[\alpha]^{20}{ }_{\mathrm{D}}-21.5(c 0.55, \mathrm{MeOH})$; UV (MeOH) $\lambda_{\max }$ $(\log \epsilon) 230(3.8), 278$ (3.2) nm; IR (KBr) $v_{\max } 3383$, 1605, 1517, 1272, $1073,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$) data, see Table 3; ESIMS m/z $399[\mathrm{M}+\mathrm{Na}]^{+}$ and $415[\mathrm{M}+\mathrm{K}]^{+}$.

Enzymatic Hydrolysis of 1-13. A solution of each compound in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was individually hydrolyzed with β-glucosidase (10 mg , Almonds Lot 1264252 , Sigma-Aldrich) at $37^{\circ} \mathrm{C}$ for 24 or 36 h . Each reaction mixture was extracted with $\operatorname{EtOAc}(3 \times 3 \mathrm{~mL})$ to yield the individual EtOAc extract and $\mathrm{H}_{2} \mathrm{O}$ phase after removing the solvents.

The EtOAc extracts were separately chromatographed over silica gel, eluting with $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{MeOH}(12: 1)$ for the hydrolysates from $\mathbf{1}-\mathbf{7}$ $(3-12 \mathrm{mg}), \mathbf{1 0}(6 \mathrm{mg})$, and $\mathbf{1 1}(11 \mathrm{mg})$ to yield aglycones $\mathbf{1 a}-\mathbf{7 a}, \mathbf{1 0 a}$, and 11a, respectively, and eluting with $\mathrm{CH}_{3} \mathrm{Cl}-\mathrm{MeOH}(10: 1)$ for the hydrolysates from $\mathbf{8}, \mathbf{9}, \mathbf{1 2}$, and $\mathbf{1 3}$ (each 10 mg) to yield 8a, 9a, 12a, and 13a.

Compound 1a $(2.0 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}+1.5(c 0.20, \mathrm{MeOH}), \mathrm{CD}(\mathrm{MeOH})$ 236 ($\Delta \epsilon-1.26$); 2a (2.1 mg): $[\alpha]^{20}{ }_{\mathrm{D}}-7.9$ (c 0.21, MeOH), CD $(\mathrm{MeOH}) 238(\Delta \epsilon+1.46)$; 3a (1.4 mg$):[\alpha]^{20}{ }_{\mathrm{D}}-2.8(c 0.14, \mathrm{MeOH})$, $\mathrm{CD}(\mathrm{MeOH}) 236(\Delta \epsilon-0.58) ; 4 \mathbf{a}(1.8 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}-4.2(c 0.18, \mathrm{MeOH})$, $\mathrm{CD}(\mathrm{MeOH}) 238(\Delta \epsilon+0.58) ; \mathbf{5 a}(7.4 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}+16.9$ (c 0.67, $\mathrm{MeOH}), \mathrm{CD}(\mathrm{MeOH}) 235(\Delta \epsilon+2.59) ; \mathbf{6 a}(3.2 \mathrm{mg}) ; 7 \mathbf{a}(2.2 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}$ $+4.0(c 0.22, \mathrm{MeOH}) ; \mathbf{8 a}(4.0 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}-19.6(c 0.25, \mathrm{MeOH}) ; \mathbf{9 a}$ $(4.0 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}-12.4(c 0.33, \mathrm{MeOH}) ; \mathbf{1 0 a}(2.1 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}-4.0(c$ $0.21, \mathrm{MeOH}), \mathrm{CD}(\mathrm{MeOH}) 236(\Delta \epsilon+0.50)$; 11a $(3.8 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}+2.4$ $(c 0.38, \mathrm{MeOH}), \mathrm{CD}(\mathrm{MeOH}) 236(\Delta \epsilon+0.58) ; 12 \mathrm{a}(4.5 \mathrm{mg}):[\alpha]^{20}{ }_{\mathrm{D}}$ +25.1 ($c 0.30, \mathrm{MeOH}) ; \mathbf{1 3 a}(4.5 \mathrm{mg}):[\alpha]^{20} \mathrm{D}+17.0(c 0.30, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{1 a} \mathbf{- 5 a}$ and $\mathbf{8 a}-\mathbf{1 3 a}$ in different solvents, see Tables S1-S3, S6, and S11-S13 in the Supporting Information. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 600 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{Me}_{2} \mathrm{CO}-d_{6}, 150 \mathrm{MHz}\right)$ data of $\mathbf{6 a}$ and $7 \mathbf{a}$ were identical with that reported in the literature. ${ }^{20,23}$

The aqueous phases of the hydrolysates of $\mathbf{1 - 1 3}$ were separately subjected to CC over silica gel eluted with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (8:1) to yield glucose with positive optical rotations, and the $[\alpha]^{20}{ }_{D}$ values ranged from +42.5 to +49.7 (c in a range of 0.11 to $0.31, \mathrm{H}_{2} \mathrm{O}$). The solvent system $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (6:1) was used for TLC identification of glucose ($R_{f}, 0.33$).

Preparation of Acetonide Derivatives (1b, 2b, and 5b). A solution of $\mathbf{1 a}(0.8 \mathrm{mg})$ in dry acetone $(1 \mathrm{~mL})$ was treated with 2,2dimethoxypropane $(0.1 \mathrm{~mL})$ and ($1 S$)-(+ -camphorsulforic acid (CSA) ($1 \mathrm{mg}, 0.004 \mathrm{mmol}$), and the mixture was stirred at ambient temperature for 4 h . The reaction mixture was quenched by addition of triethylamine and then evaporated in vacuo to give a crude product. The residue was purified by reversed-phase preparative HPLC using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (64:36) to afford acetonide $\mathbf{1 b}(0.6 \mathrm{mg})$. Similarly, $\mathbf{2 a}(1.7 \mathrm{mg})$ and $\mathbf{5 a}$ $(2.1 \mathrm{mg})$ were transformed into acetonide derivatives $\mathbf{2 b}(1.5 \mathrm{mg})$ and $\mathbf{5 b}(1.6 \mathrm{mg})$, respectively. For ${ }^{1} \mathrm{H}$ NMR data $(600 \mathrm{MHz})$ of $\mathbf{1 b}, \mathbf{2 b}$, and $\mathbf{5 b}$ in CDCl_{3} see Tables S 1 and S2 in the Supporting Information.

Cell Culture and MTT Assay. PC12 cells at a density of 5×10^{3} cells per well in 96-well plates were suspended in Dulbecco's modified Eagle's medium (DMEM, Gibico) supplemented with 5\% fetal bovine serum (FBS, Hyclone), 5\% horse serum, penicillin ($100 \mathrm{IU} / \mathrm{mL}$), streptomycin $(100 \mu \mathrm{~g} / \mathrm{mL})$, and L-glutamine $(2 \mu \mathrm{M})$ and incubated in a CO_{2} incubator (5%) at $37^{\circ} \mathrm{C}$ for 24 h . Then the cells were pretreated with test compounds $\left(10^{-5} \mathrm{M}\right)$ and $\mathrm{NGF}(50 \mathrm{ng} / \mathrm{mL})$, respectively, for another 24 h before exposed to glutamate $(20 \mu \mathrm{M})$. After incubation for an additional 24 h , MTT ($0.5 \mathrm{mg} / \mathrm{mL}$) was added to the medium and incubated for 4 h . Absorbance was measured at 570 nm using a microplate reader, and the cell viability was evaluated by relative protection, which was calculated as $100 \times$ [optical density (OD) of test compound + glutamate-treated culture - OD of glutamated-treated culture]/[OD of control culture - OD of glutamated-treated culture]. ${ }^{46}$

Acknowledgment. The authors are grateful to Mr. W.-Y. He for his assistance in obtaining NMR spectra. Financial support from the New Century Excellent Talent (NCET) Program of Chinese Ministry of Education, the Natural Sciences Foundation of China (NSFC, Grant No. 20432030), the National "973" Program of China (Grant No. 2004CB13518906), and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, Grant No. IRT0514) is gratefully acknowledged.

Supporting Information Available: Detailed extraction and isolation procedure including known compounds. Figure S1 for HMBC correlation scheme of compounds 1 and 7. Figures S2 and S3 of the CD spectra of compounds $\mathbf{1 - 5}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 a - 5 a}, \mathbf{1 0 a}$, and 11a. 1D NMR spectra of compounds $\mathbf{1 - 9}$. Tables S1-S15 of the NMR data for $1 \mathbf{a}-5 a, 8 a-13 a, 1 b, 2 b, 5 b, 5$, and $8-16$ in different solvents. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Editorial Committee of Chinese Materia Medica, State Administration Bureau of Traditional Chinese Medicine. Chinese Materia Medica (Zhonghua Bencao); Shanghai Science \& Technology Press: Shanghai, 2000; Vol. 5, pp 227-228. (b) Editorial Committee of Chinese Flora, Chinese Academy of Sciences. Chinese Flora (Zhongguo Zhiwu Zhi); Science Press: Beijing, 1981; Vol. 46, pp 54-56..
(2) Wang, Y.; Wang, S. J.; Mo, S. Y.; Li, S.; Yang, Y. C.; Shi, J. G. Org. Lett. 2005, 7, 4733-4736.
(3) Xue, Z.; Li, S.; Wang, S. J.; Wang, Y. H.; Yang, Y. C.; Shi, J. G.; He, L. J. Nat. Prod. 2006, 69, 907-913.
(4) Sinkkonen, J.; Karonen, M.; Liimatainen, J.; Pihlaja, K. Magn. Reson. Chem. 2006, 44, 633-636.
(5) Gao, J. J.; Jia, Z. J. Indian J. Chem. 1995, 34B, 466-468.
(6) Wang, C. Z.; Jia, Z. J. Planta Med. 1997, 63, 241-244.
(7) Kijima, H.; Ide, T.; Otsuka, H.; Ogimi, C.; Hirata, E.; Takushi, A.; Takeda, Y. Phytochemistry 1997, 44, 1551-1557.
(8) Ishikawa, T.; Fujimatu, E.; Kitajima, J. Chem. Pharm. Bull. 2002, 50, 1460-1466.
(9) Mohamed, K. M. Phytochemistry 2001, 58, 615-618.
(10) Hudson, C. S.; Dale, J. K. J. Am. Chem. Soc. 1917, 39, 320-328.
(11) Morikawa, T.; Matsuda, H.; Nishida, N.; Ohgushi, T.; Yoshikawa, M. Chem. Pharm. Bull. 2004, 52, 1387-1390.
(12) (a) Gellerstedt, G.; Lundquist, K.; Wallis, A. F. A.; Zhang, L. M. Phytochemistry 1995, 40, 263-265. (b) Johansson, A.; Lundquist, K.; Stomberg, R. Acta Chem. Scand. 1992, 46, 901-905.
(13) Deyama, T.; Ikawa, T.; Kitagawa, S.; Nishibe, S. Chem. Pharm. Bull. 1987, 35, 1803-1807.
(14) (a) Yuan, Z.; Tezuka, Y.; Fan, W. Z.; Kadota, S.; Li, X. Chem. Pharm. Bull. 2002, 50, 73-77. (b) Braga, A. C. H.; Zacchino, S.; Badano, H.; Sierra, M. G.; Rúveda, E. A. Phytochemistry 1984, 23, 2025-2028.
(15) Matsuda, N.; Kikuchi, M. Chem. Pharm. Bull. 1996, 44, 1676-1679.
(16) Besombes, S.; Robert, D.; Utille, J.-P.; Taravel, F. R.; Mazeau, K. J. Agric. Food Chem. 2003, 51, 34-42.
(17) Lourith, N.; Katayama, T.; Suzuki, T. J. Wood Sci. 2005, 51, 370378.
(18) DellaGreca, M.; Molinaro, A.; Monaco, P.; Previtera, L. Phytochemistry 1994, 35, 777-779.
(19) Arnoldi, A.; Merlini, L J. Chem. Soc., Perkin Trans 1 1985, 2555, 2557.
(20) Sy, L. K.; Brown, G. D. Phytochemistry 1999, 50, 781-785.
(21) Matsuda, N.; Kikuchi, M. Annu. Rep. Tohoku Coll. Pharm. 1996, 43, 75-78.
(22) (a) Agrawal, P. K.; Rastogi, R. P.; Osterdahl, B. G. Org. Magn. Reson. 1983, 21, 119-121. (b) Li, S. M.; Iliefski, T.; Lundquist, K.; Wallis, A. F. A. Phytochemistry 1997, 46, 929-934. (c) Kim, T. H.; Ito, H.;

Hayashi, K.; Hasegawa, T.; Machiguchi, T.; Yoshida, T. Chem. Pharm. Bull. 2005, 53, 641-644.
(23) Miki, K.; Takehara, T.; Sasaya, T.; Sakakibara, A. Phytochemistry 1980, 19, 449-453.
(24) Otsuka, H.; Takeuchi, M.; Inoshiri, S.; Sato, T.; Yamasaki, K. Phytochemistry 1989, 28, 883-886.
(25) Lin, S.; Wang, S. J.; Liu, M. T.; Gan, M. L.; Li, S.; Yang, Y. C.; Wang, Y. H.; He, W. Y.; Shi, J. G. J. Nat. Prod. 2007, 70, 817-823.
(26) Takeshita, M.; Yaguchi, R.; Akutsu, N. Tetrahedron: Asymmetry 1992, 3, 1369-1372.
(27) DellaGreca, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Synth. Соттии. 1998, 28, 3693-3700.
(28) Matsuura, H.; Miyazaki, H.; Asakawa, C.; Amano, M.; Yoshihara, T.; Mizutani, J. Phytochemistry 2004, 65, 91-97.
(29) Lundgren, L. N.; Popoff, T.; Theander, O. Acta Chem. Scand. 1982, B36, 695-699.
(30) Ishimaru, K.; Nonaka, G.-I.; Nishioka, I. Phytochemistry 1987, 26, 1147-1152.
(31) Takara, K.; Otsuka, K.; Wada, K.; Iwasaki, H.; Yamashita, M. Biosci. Biotechnol. Biochem. 2007, 71, 183-191.
(32) Sugiyama, M.; Kikuchi, M. Chem. Pharm. Bull. 1992, 40, 325-326.
(33) Inoshiri, S.; Sasaki, M.; Kohda, H.; Otsuka, H.; Yamasaki, K. Phytochemistry 1987, 26, 2811-2814.
(34) Kobayashi, H.; Karasawa, H.; Miyase, T; Fukushima, S. Chem. Pharm. Bull. 1985, 33, 1452-1457.
(35) Ma, W. G.; Fuzzat, N.; Wolfender, J. L.; Hostettmann, K. Helv. Chim. Acta 1994, 77, 1660-1672.
(36) (a) Miyase, T.; Yamada, M.; Fukushima, S. Chem. Pharm. Bull. 1987, 35, 1969-1974. (b) Banskota, A. H.; Li, J. P.; Tezuka, Y.; Kadota, S. J. Trad. Med. 2003, 20, 57-61.
(37) Chung, M. I.; Lai, M. H.; Yen, M. H.; Wu, R. R.; Lin, C. N. Phytochemistry 1997, 44, 943-947.
(38) Kitajima, J.; Ishikawa, T.; Tanaka, Y.; Ono, M.; Ito, Y.; Nohara, T. Chem. Pharm. Bull. 1998, 46, 1587-1590.
(39) Andersson, R.; Lundgren, L. N. Phytochemistry 1988, 27, 559-562.
(40) Kitajima, J.; Okamura, C.; Ishikawa, T; Tonaka, Y. Chem. Pharm. Bull 1998, 46, 1939-1940.
(41) Su, Y. F.; Guo, D. A.; Cui, Y. J.; Liu, J. S.; Zheng, J. H. J. Asian Nat. Prod. Res. 2001, 3, 229-233.
(42) Cutillo, F.; D'Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Zarrelli, A. J. Agric. Food Chem. 2003, 51, 6165-6172.
(43) (a) Besombes, S.; Robert, D.; Utille, J.-P.; Taravel, F. R.; Mazeau, K. Holzforschung 2003, 57, 266-274. (b) Besombes, S.; Mazeau, K. Biopolymers 2004, 73, 301-315. (c) Besombes, S.; Utille, J.-P.; Mazeau, K.; Robert, D.; Taravel, F. R. Magn. Reson. Chem. 2004, 42, 337-347.
(44) (a) Li, S. M.; Lundquist, K.; Wallis, A. F. A. Phytochemistry 1998, 49, 2125-2128. (b) DellaGreca, M.; Ferrara, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Phytochemistry 1998, 49, 1299-1304.
(45) Deyama, T.; Ikawa, T.; Kitagawa, S.; Nishibe, S. Chem. Pharm. Bull. 1986, 34, 523-527.
(46) Yoon, J. S.; Lee, M. K.; Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2006, 69, 290-291.
NP7007329

[^0]: * To whom correspondence should be addressed. Tel: 86-10-83154789. Fax: 86-10-63017757. E-mail: shijg@imm.ac.cn.

[^1]:

